首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1896篇
  免费   621篇
  国内免费   276篇
测绘学   14篇
大气科学   47篇
地球物理   1257篇
地质学   1215篇
海洋学   101篇
天文学   40篇
综合类   47篇
自然地理   72篇
  2024年   2篇
  2023年   21篇
  2022年   53篇
  2021年   57篇
  2020年   59篇
  2019年   96篇
  2018年   104篇
  2017年   91篇
  2016年   121篇
  2015年   99篇
  2014年   137篇
  2013年   154篇
  2012年   96篇
  2011年   136篇
  2010年   69篇
  2009年   133篇
  2008年   134篇
  2007年   117篇
  2006年   115篇
  2005年   93篇
  2004年   100篇
  2003年   83篇
  2002年   69篇
  2001年   71篇
  2000年   61篇
  1999年   56篇
  1998年   61篇
  1997年   48篇
  1996年   54篇
  1995年   61篇
  1994年   53篇
  1993年   38篇
  1992年   26篇
  1991年   23篇
  1990年   18篇
  1989年   7篇
  1988年   23篇
  1987年   9篇
  1986年   11篇
  1984年   11篇
  1983年   2篇
  1981年   1篇
  1979年   12篇
  1978年   5篇
  1977年   2篇
  1954年   1篇
排序方式: 共有2793条查询结果,搜索用时 31 毫秒
11.
Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid–rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6–8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S–C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe–Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S–C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0.05 K0.86 (Al 1.77 Fe0.08 Mg0.15) (Si3.22 Al0.78) O10 (OH)2. They are enriched in Fe and Mg compared to the detrital micas. Newly-formed chlorites are associated with micas along the shear planes. According to microprobe analyses, they present the following structural formula: (Al1,48 Fe2,50 Mg1,84) (Si2,82 Al1,18) O10 (OH)8. All these data suggest that these clay minerals are synkinematic and registered the fault activity. In the gouge samples, illite and chlorite are the major clay minerals; smectite is locally present in some samples.In the foliated sandstones, Kubler Index (KI) ((001) XRD peak width at half height) data and thermodynamic calculations from synkinematic chlorite chemistry suggest that the main fault deformation occurred under temperatures around 220 °C (diagenesis to anchizone boundary). KI measured on pelites and sandstones from the hanging and footwall, display similar values coherent with the maximal burial temperature of the Annot sandstones in this area. The gouge samples have a higher KI index, which could be explained by a reactivation of the fault at lower temperatures during the exhumation of the Annot sandstones formation.  相似文献   
12.
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1–5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.  相似文献   
13.
In the north-western Bonaparte Basin (North West Shelf of Australia) Neogene to Recent flexure-induced extension superimposed obliquely over the Mesozoic rift structures. Thus, the area offers a good opportunity to investigate the dynamics and architecture of oblique extension fault systems. Analysis of basin-scale 2D and 3D seismic data along the Vulcan sub-basin shows that Neogene deformation produced a new set of extensional, en échelon faults, at places accompanied by the reactivation of the Mesozoic faults. The pre-existing Mesozoic structures strongly control the distribution of the Neogene-Recent deformation, both at regional and local scales. Main controls on the Neogene-Recent fault style, density and segmentation/linkage include: (1) the orientation of the underlying Mesozoic structures, (2) the obliqueness of the younger extension relative to the rift-inherited faults, and (3) the proximity to the Timor Trough. Three types of vertical relationships have been observed between Mesozoic and Neogene-Recent faults. Hard linkages seems to develop when both fault systems trend parallel, therefore increasing risks for trap integrity. It is suggested that the orientation of maximum horizontal stress (SHmax) relative to the Mesozoic faults, forming hydrocarbon traps, is critical for their potential seal/leak behaviour. Stratigraphic growth across the faults indicates that main fault activity occurred during the Plio-Pleistocene, which corresponds to the timing of tectonic loading on Timor Island and the development of lithospheric flexure. Synchronism of normal faulting with flexural bending suggests that extensional deformation on the descending Australian margin accompanied the formation of the Timor Trough.  相似文献   
14.
In order to discuss the role and influence of water during the generation of natural gas, the participation mechanism of water during the evolution of organic matter and its influences were summarized. In addition, we carried out an anhydrous cracking experiment of oil extracted from the Feixianguan Formation source rock in a closed system, which led to the establishment of the kinetic models for describing carbon and hydrogen isotopic fractionation during gas generation from organic matter. The models were calibrated and then applied to the northeastern Sichuan Basin. By combining a series of gas generation experiments from octadecane pyrolysis without water or with distilled water in varying mass proportions, several results were proved: (1) the hydrogen isotopic composition of natural gas becomes lighter with the participation of formation water; (2) we can quantitatively study the hydrogen isotopic fractionation with the kinetic model for describing carbon isotopic fractionation; (3) more abundant and reliable geological information can be obtained through the combined application of carbon and hydrogen isotopic indices.  相似文献   
15.
In order to recognize the impact of aqueous medium on gas yields and the kinetic behaviors of hydrogen isotope fractionation during organic matter thermal degradation, the gold tube apparatus was used to conduct thermal simulation experiments by mixing the nC18 with the water of different properties and proportions. The yields of natural gas components, the relation among hydrogen isotope composition of each component and the experimental temperatures vs. heating rates have been obtained, and the results indicate that under the higher temperature conditions, the hydrous experiment has obvious impact on gas yields, such as when more water is added, higher amounts of hydrocarbon gas and H2 are yielded, and the existence of water obviously prolongs the temperature interval with the existence of heavy hydrocarbon gas. It also shows that the hydrogen isotope of hydrocarbon gas generated by the hydrous experiment is obviously lighter than that generated by the anhydrous experiment, and with the increasing amount of added water, the δD value of hydrocarbon gas gradually decreases. Compared with gas yields, the variation of δD value is more sensitive to aqueous medium in the thermal simulation experiment. However, compared with the amount of the added water, the aqueous medium property has smaller impact on the gas yields, which still shows the inherit effect on hydrogen isotope composition of aqueous medium. Through the model simulation and the isotope fractionation behavior analysis, it is validated that the hydrogen isotope fractionation process can be well described by the chemical kinetic model. The difference of reaction fraction of normal methane and D-containing methane is large, corresponding to the same activation energy. The content of normal methane is obviously higher in the part with lower activation energy, while the content of D-containing methane is higher in the part with higher activation energy. Therefore, it will result in larger hydrogen isotope fractionation amplitude, and the δD values will be more sensitive to the variation of maturity. Meanwhile, the average activation energy of methane generation from nC18 in the hydrous experiment is higher than that in the anhydrous experiment, and the greater amount of added water, the larger the average activation energy of methane generation reaction. This has laid foundation for its exploratory application in the study of gas reservoir forming history and the gas-source correlation, which indicates the research and application prospects in this orientation.  相似文献   
16.
首都圈地区卫星热红外亮温变化特征研究   总被引:1,自引:0,他引:1  
利用1999年和2003-2006年共5年的NOAA卫星热红外遥感数据,对北京及周边地区的热红外影像特征和红外亮温年变特征进行了跟踪观测、统计分析与对比研究.结果表明:①不同地质构造单元,特别是线性断裂构造在热红外影像上有清晰的显示,通过不同时期红外影像的对比研究可以很好地揭示断裂构造的空间展布及规模形态,为活动构造研...  相似文献   
17.
古气候变化与地下热水中氢氧稳定同位的关系   总被引:1,自引:0,他引:1  
关中盆地地下热水中氢氧稳定同位素的研究表明:研究区地下热水中氢氧稳定同位素组成变化与当地古气候变化具有良好的对应关系,古气候变化直接影响了地下热水接受补给时的氢氧稳定同位素组成。研究区地下热水的补给为更新世前古代大气降水。大约在8.2~10.2 kaB.P.和18.1~19.2 kaB.P.这两个时间段,可能是由于当时温度较低导致关中盆地地下热水补给偏少;关中盆地地下热水的补给过程受古气候的变化影响呈现非等速补给特征,可能存在一定的古地下水形成期。  相似文献   
18.
藏北低速体存在的地震学证据——INDEPTH4宽频地震结果   总被引:1,自引:0,他引:1  
位于青藏高原东北部的INDEPTH-IV地震探测剖面,始于柴达木盆地南缘,穿越东昆仑造山带、金沙江缝合线,终止于羌塘地体.本文作者利用天然地震体波完成了该区的三维走时残差反演,勾划出了青藏高原东北部的深部构造格局.研究区最显著的现象则是分布在昆仑地体、可可西里地体、羌塘地体北部下地壳、上地幔中的低速体.对其成因,有可能...  相似文献   
19.
Aruba, Bonaire, and Curaçao are islands aligned along the crest of a 200-km-long segment of the east-west-trending Leeward Antilles ridge within the broad Caribbean-South America plate boundary zone presently characterized by east-west, right-lateral strike-slip motion. The crust of the Leeward Antilles ridge represents the western segment of the Cretaceous-early Cenozoic Great Arc of the Caribbean, which obliquely collided, with the continental margin of northern South America in early Cenozoic time. Following the collision, the ridge was affected by folding and was segmented by oblique, northwest-striking normal faults that have produced steep-sided, northwest-trending, elongate islands and narrow shelves separated by deepwater, sediment-filled and fault-controlled basins. In this paper, we present the first fault slip observations on the Neogene carbonate rocks that cover large areas of all three islands. Our main objective is to quantify the timing and nature of Neogene to Quaternary phases of faulting and folding that have affected the structure and topography of this area including offshore sedimentary basins that are being explored for their petroleum potential. These data constrain three fault phases that have affected Aruba, Bonaire, and Curaçao and likely the adjacent offshore areas: 1) NW-SE-directed late Paleogene compression; 2) middle Miocene syndepositional NNW-SSE to NNE-SSW extension that produced deep rift basins transverse to the east-west-trending Leeward Antilles ridge; and 3) Pliocene-Quaternary NNE-trending compression that produced NW-SE-trending anticlines present on Aruba, Curaçao and Bonaire islands. Our new observations - that include detailed relationships between striated fault planes, paleostress tensors, and bedding planes - show that prominent bedding dips of Neogene limestone on Aruba, Bonaire and Curaçao were produced by regional tectonic shortening across the entire Leeward Antilles ridge rather than by localized, syndepositional effects as proposed by previous workers. We interpret Pliocene-Quaternary NNE-directed shortening effects on the Leeward Antilles ridge as the result of northeastward extrusion or “tectonic escape” of continental areas of western Venezuela combined with southeastward shallow subduction of the Caribbean plate beneath the ridge.  相似文献   
20.
Chalk is exposed in the Heidestrasse quarry at Lägerdorf, at the top of the NE-SW trending Krempe salt ridge. Structural data indicate the presence of two joint sets, striking almost parallel and perpendicular to the salt ridge, respectively, and of a set of conjugate extensional faults and fault zones striking NW-SE, i.e. almost perpendicular to the salt ridge. Within the overall NW-SE trend of joints and faults, strike variations occur from the massive chalk exposed in the lower half of the quarry, to the overlying layered chalk. A large variability characterizes the normalized spacing of both joint sets, which does not show any clear trend with layer dip. In situ measurements indicate that the cross-sectional permeability of tight joints increases 1-2 orders of magnitude with respect to the undeformed chalk. We propose that joint and fault azimuthal variability resulted from changes through time of the stress ellipsoid at the top of the salt ridge, while joint spacing variability is associated with the weak mechanical influence of bedding in chalk. Azimuthal variability improves fracture connectivity and, hence, permeability and fluid flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号